scrna3/6 Jupyter Notebook lamindata

Query individual files#

Here, weโ€™ll query individual files and inspect their metadata.

This guide can be skipped if you are only interested in how to leverage the overall dataset.

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
๐Ÿ’ก loaded instance: testuser1/test-scrna (lamindb 0.57.2)
ln.track()
๐Ÿ’ก notebook imports: anndata==0.9.2 lamindb==0.57.2 lnschema_bionty==0.33.0
๐Ÿ’ก Transform(uid='agayZTonayqAz8', name='Query individual files', short_name='scrna3', version='0', type=notebook, updated_at=2023-10-23 17:48:19, created_by_id=1)
๐Ÿ’ก Run(uid='wNdQZmvlKeZbcGppGyRs', run_at=2023-10-23 17:48:19, transform_id=3, created_by_id=1)

Access #

Query files by provenance metadata#

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
uid score
name
scRNA-seq Nv48yAceNSh8z8 90.0
Append a new batch of data ManDYgmftZ8Cz8 36.0
Query individual files agayZTonayqAz8 36.0
transform = ln.Transform.filter(uid="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
1 KHDuUmCEv6SwM8UNQulB 1 None .h5ad AnnData Conde22 None 57615999 6Hu1BywwK6bfIU2Dpku2xZ sha1-fl 1 1 None 2023-10-23 17:47:33 1

Query files based on biological metadata#

assays = lb.ExperimentalFactor.lookup()
organism = lb.Organism.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,
    organism=organism.human,
    cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
uid storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
1 KHDuUmCEv6SwM8UNQulB 1 None .h5ad AnnData Conde22 None 57615999 6Hu1BywwK6bfIU2Dpku2xZ sha1-fl 1 1 None 2023-10-23 17:47:33 1
2 LnH0qcPKHapOHPwc6LrM 1 None .h5ad AnnData 10x reference adata None 857752 U4UmKxr_rN8KlwVK4WYKjw md5 2 2 None 2023-10-23 17:48:08 1

Transform #

Compare gene sets#

Get file objects:

query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(uid='KHDuUmCEv6SwM8UNQulB', suffix='.h5ad', accessor='AnnData', description='Conde22', size=57615999, hash='6Hu1BywwK6bfIU2Dpku2xZ', hash_type='sha1-fl', updated_at=2023-10-23 17:47:33)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(uid='ZIqsTwSZ', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-23 17:46:37, created_by_id=1)
  ๐Ÿ“” transform: Transform(uid='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-10-23 17:46:43, created_by_id=1)
  ๐Ÿ‘ฃ run: Run(uid='IEKKxa53gZdZ0HW3weYa', run_at=2023-10-23 17:46:43, transform_id=1, created_by_id=1)
  ๐Ÿ‘ค created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-10-23 17:46:37)
  โฌ‡๏ธ input_of (core.Run): ['2023-10-23 17:47:41']
Features:
  var: FeatureSet(uid='5cU3jVnVC7TmCShMOHGI', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-23 17:47:27, modality_id=1, created_by_id=1)
    'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'None', 'None', 'None', 'None', 'None', 'None', 'OR4F29', 'None', 'OR4F16', 'None', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C', 'None', ...
  obs: FeatureSet(uid='YMf0jITlhFBIzo97KFNP', n=4, registry='core.Feature', hash='sTKN4H5ua2p0aUB7Qf41', updated_at=2023-10-23 17:47:28, modality_id=2, created_by_id=1)
    ๐Ÿ”— cell_type (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
    ๐Ÿ”— assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
    ๐Ÿ”— tissue (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
    ๐Ÿ”— donor (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
Labels:
  ๐Ÿท๏ธ organism (1, bionty.Organism): 'human'
  ๐Ÿท๏ธ tissues (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
  ๐Ÿท๏ธ cell_types (32, bionty.CellType): 'classical monocyte', 'T follicular helper cell', 'memory B cell', 'alveolar macrophage', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', 'alpha-beta T cell', 'CD4-positive helper T cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'macrophage', ...
  ๐Ÿท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
  ๐Ÿท๏ธ ulabels (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
file1.view_flow()
_images/2fdb4e3b5c4107e75d95be97ebc2bb935ab333de6e0e40fedb24216061a6d9c0.svg
file2.describe()
File(uid='LnH0qcPKHapOHPwc6LrM', suffix='.h5ad', accessor='AnnData', description='10x reference adata', size=857752, hash='U4UmKxr_rN8KlwVK4WYKjw', hash_type='md5', updated_at=2023-10-23 17:48:08)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(uid='ZIqsTwSZ', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-23 17:46:37, created_by_id=1)
  ๐Ÿ“” transform: Transform(uid='ManDYgmftZ8Cz8', name='Append a new batch of data', short_name='scrna2', version='0', type='notebook', updated_at=2023-10-23 17:47:41, created_by_id=1)
  ๐Ÿ‘ฃ run: Run(uid='ZDcOJl5E15UoqnTxZJ7t', run_at=2023-10-23 17:47:41, transform_id=2, created_by_id=1)
  ๐Ÿ‘ค created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-10-23 17:46:37)
Features:
  var: FeatureSet(uid='JP1OvnEx2ITWEjurSjHk', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-10-23 17:48:08, modality_id=1, created_by_id=1)
    'IL18', 'NPM3', 'S100A9', 'S100A8', 'CNN2', 'ARHGAP45', 'RNF34', 'GPX4', 'S100A6', 'ADISSP', 'S100A4', 'FAM174C', 'SIT1', 'CCDC107', 'RSL1D1', 'TLN1', 'HES4', 'TNFRSF17', 'PCNA', 'RAB13', ...
  obs: FeatureSet(uid='kq35k5DEtE4DkfG02hgo', n=1, registry='core.Feature', hash='iuyPNK3smIuvcnCIlFSV', updated_at=2023-10-23 17:48:08, modality_id=2, created_by_id=1)
    ๐Ÿ”— cell_type (9, bionty.CellType): 'B cell, CD19-positive', 'dendritic cell', 'CD24-positive, CD4 single-positive thymocyte', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'gamma-delta T cell', 'monocyte', 'cytotoxic T cell', 'CD4-positive, alpha-beta T cell'
  external: FeatureSet(uid='4tILjB6W30HNtBGOI5uS', n=2, registry='core.Feature', hash='LNTvx6NLtiHp0Nw8h_T5', updated_at=2023-10-23 17:48:08, modality_id=2, created_by_id=1)
    ๐Ÿ”— assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
    ๐Ÿ”— organism (1, bionty.Organism): 'human'
Labels:
  ๐Ÿท๏ธ organism (1, bionty.Organism): 'human'
  ๐Ÿท๏ธ cell_types (9, bionty.CellType): 'B cell, CD19-positive', 'dendritic cell', 'CD24-positive, CD4 single-positive thymocyte', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'gamma-delta T cell', 'monocyte', 'cytotoxic T cell', 'CD4-positive, alpha-beta T cell'
  ๐Ÿท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
_images/b5a3be536b8e41a5a6223e9d2181e867e9bb8c618edede53723999943e655162.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['HES4',
 'TNFRSF4',
 'SSU72',
 'PARK7',
 'RBP7',
 'SRM',
 'MAD2L2',
 'AGTRAP',
 'TNFRSF1B',
 'EFHD2']

Compare cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human', 'gamma-delta T cell']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subsetted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร— n_vars = 187 ร— 749
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file               
CD16-positive, CD56-dim natural killer cell, human  Conde22                114
gamma-delta T cell                                  Conde22                 66
                                                    10x reference adata      4
CD16-positive, CD56-dim natural killer cell, human  10x reference adata      3
dtype: int64