Analysis flow#
Here, we’ll track typical data transformations like subsetting that occur during analysis.
If exploring more generally, read this first: Project flow.
Setup#
# a lamindb instance containing Bionty schema
!lamin init --storage ./analysis-usecase --schema bionty
Show code cell output
✅ saved: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-10-23 17:45:30)
✅ saved: Storage(uid='XmX5Jbqn', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase', type='local', updated_at=2023-10-23 17:45:30, created_by_id=1)
💡 loaded instance: testuser1/analysis-usecase
💡 did not register local instance on hub
import lamindb as ln
import lnschema_bionty as lb
lb.settings.organism = "human" # globally set organism
lb.settings.auto_save_parents = False
💡 loaded instance: testuser1/analysis-usecase (lamindb 0.57.2)
ln.track()
💡 notebook imports: lamindb==0.57.2 lnschema_bionty==0.33.0
💡 Transform(uid='eNef4Arw8nNMz8', name='Analysis flow', short_name='analysis-flow', version='0', type=notebook, updated_at=2023-10-23 17:45:32, created_by_id=1)
💡 Run(uid='kVTOQgyAx68YsbVkoQHD', run_at=2023-10-23 17:45:32, transform_id=1, created_by_id=1)
Track cell types, tissues and diseases#
We fetch an example dataset from LaminDB that has a few cell type, tissue and disease annotations:
Show code cell content
adata = ln.dev.datasets.anndata_with_obs()
adata
AnnData object with n_obs × n_vars = 40 × 100
obs: 'cell_type', 'cell_type_id', 'tissue', 'disease'
adata.var_names[:5]
Index(['ENSG00000000003', 'ENSG00000000005', 'ENSG00000000419',
'ENSG00000000457', 'ENSG00000000460'],
dtype='object')
adata.obs[["tissue", "cell_type", "disease"]].value_counts()
tissue cell_type disease
brain my new cell type Alzheimer disease 10
heart hepatocyte cardiac ventricle disorder 10
kidney T cell chronic kidney disease 10
liver hematopoietic stem cell liver lymphoma 10
dtype: int64
Register biological metadata and link to the dataset#
As a first step, we register the Anndata object with LaminDB using from_anndata()
:
file = ln.File.from_anndata(
adata, key="mini_anndata_with_obs.h5ad", field=lb.Gene.ensembl_gene_id
)
... storing 'cell_type' as categorical
... storing 'cell_type_id' as categorical
... storing 'tissue' as categorical
... storing 'disease' as categorical
❗ received 99 unique terms, 1 empty/duplicated term is ignored
❗ 99 terms (100.00%) are not validated for ensembl_gene_id: ENSG00000000003, ENSG00000000005, ENSG00000000419, ENSG00000000457, ENSG00000000460, ENSG00000000938, ENSG00000000971, ENSG00000001036, ENSG00000001084, ENSG00000001167, ENSG00000001460, ENSG00000001461, ENSG00000001497, ENSG00000001561, ENSG00000001617, ENSG00000001626, ENSG00000001629, ENSG00000001630, ENSG00000001631, ENSG00000002016, ...
❗ no validated features, skip creating feature set
❗ 4 terms (100.00%) are not validated for name: cell_type, cell_type_id, tissue, disease
❗ no validated features, skip creating feature set
file.save()
cell_types = lb.CellType.from_values(adata.obs.cell_type, lb.CellType.name)
tissues = lb.Tissue.from_values(adata.obs.tissue, lb.Tissue.name)
diseases = lb.Disease.from_values(adata.obs.disease, lb.Disease.name)
Show code cell output
❗ did not create CellType record for 1 non-validated name: 'my new cell type'
All of these look good and contain no typos, let’s save them to their registries:
ln.save(cell_types)
ln.save(tissues)
ln.save(diseases)
We also need some features to bucket these labels:
ln.Feature(name="cell_type", type="category").save()
ln.Feature(name="tissue", type="category").save()
ln.Feature(name="disease", type="category").save()
features = ln.Feature.lookup()
Link labels against the file:
file.labels.add(cell_types, feature=features.cell_type)
file.labels.add(tissues, feature=features.tissue)
file.labels.add(diseases, feature=features.disease)
file.describe()
File(uid='O9KaSrGaDktDkN9KAkGk', key='mini_anndata_with_obs.h5ad', suffix='.h5ad', accessor='AnnData', size=46992, hash='IJORtcQUSS11QBqD-nTD0A', hash_type='md5', updated_at=2023-10-23 17:45:33)
Provenance:
🗃️ storage: Storage(uid='XmX5Jbqn', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase', type='local', updated_at=2023-10-23 17:45:30, created_by_id=1)
💫 transform: Transform(uid='eNef4Arw8nNMz8', name='Analysis flow', short_name='analysis-flow', version='0', type=notebook, updated_at=2023-10-23 17:45:32, created_by_id=1)
👣 run: Run(uid='kVTOQgyAx68YsbVkoQHD', run_at=2023-10-23 17:45:32, transform_id=1, created_by_id=1)
👤 created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-10-23 17:45:30)
Features:
external: FeatureSet(uid='lygziRfkBfrJa34d2uUA', n=3, registry='core.Feature', hash='wlYmDAPUN_HwomBnSH6w', updated_at=2023-10-23 17:45:35, modality_id=1, created_by_id=1)
🔗 cell_type (3, bionty.CellType): 'T cell', 'hematopoietic stem cell', 'hepatocyte'
🔗 tissue (4, bionty.Tissue): 'kidney', 'liver', 'heart', 'brain'
🔗 disease (4, bionty.Disease): 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
Labels:
🏷️ tissues (4, bionty.Tissue): 'kidney', 'liver', 'heart', 'brain'
🏷️ cell_types (3, bionty.CellType): 'T cell', 'hematopoietic stem cell', 'hepatocyte'
🏷️ diseases (4, bionty.Disease): 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
file.view_flow()
Examine the currently available cell types and tissues:
lb.CellType.filter().df()
Show code cell output
uid | name | ontology_id | abbr | synonyms | description | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
1 | BxNjby0x | T cell | CL:0000084 | None | T-lymphocyte|T-cell|T lymphocyte | A Type Of Lymphocyte Whose Defining Characteri... | 20 | 2023-10-23 17:45:35 | 1 |
2 | m91LZBDZ | hematopoietic stem cell | CL:0000037 | None | blood forming stem cell|hemopoietic stem cell|HSC | A Stem Cell From Which All Cells Of The Lympho... | 20 | 2023-10-23 17:45:35 | 1 |
3 | J7hHC8SK | hepatocyte | CL:0000182 | None | None | The Main Structural Component Of The Liver. Th... | 20 | 2023-10-23 17:45:35 | 1 |
lb.Tissue.filter().df()
Show code cell output
uid | name | ontology_id | abbr | synonyms | description | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
1 | j9lTWyWV | kidney | UBERON:0002113 | None | None | A Paired Organ Of The Urinary Tract Which Has ... | 23 | 2023-10-23 17:45:35 | 1 |
2 | HHKnN309 | liver | UBERON:0002107 | None | None | An Exocrine Gland Which Secretes Bile And Func... | 23 | 2023-10-23 17:45:35 | 1 |
3 | sm45H0wI | heart | UBERON:0000948 | None | vertebrate heart|chambered heart | A Myogenic Muscular Circulatory Organ Found In... | 23 | 2023-10-23 17:45:35 | 1 |
4 | 7HcGzG0l | brain | UBERON:0000955 | None | None | The Brain Is The Center Of The Nervous System ... | 23 | 2023-10-23 17:45:35 | 1 |
Processing the dataset#
To track our data transformation we create a new Transform
of type “pipeline”:
transform = ln.Transform(
name="Subset to T-cells and liver lymphoma", version="0.1.0", type="pipeline"
)
Set the current tracking to the new transform:
ln.track(transform)
💡 Transform(uid='eK6wXyT78bxgZ4', name='Subset to T-cells and liver lymphoma', version='0.1.0', type='pipeline', updated_at=2023-10-23 17:45:35, created_by_id=1)
💡 Run(uid='kLXAPMH9o6n0emnOBshW', run_at=2023-10-23 17:45:35, transform_id=2, created_by_id=1)
Get a backed AnnData object#
file = ln.File.filter(key="mini_anndata_with_obs.h5ad").one()
adata = file.backed()
adata
AnnDataAccessor object with n_obs × n_vars = 40 × 100
constructed for the AnnData object mini_anndata_with_obs.h5ad
obs: ['_index', 'cell_type', 'cell_type_id', 'disease', 'tissue']
var: ['_index']
adata.obs[["cell_type", "disease"]].value_counts()
cell_type disease
T cell chronic kidney disease 10
hematopoietic stem cell liver lymphoma 10
hepatocyte cardiac ventricle disorder 10
my new cell type Alzheimer disease 10
dtype: int64
Subset dataset to specific cell types and diseases#
Create the subset:
subset_obs = adata.obs.cell_type.isin(["T cell", "hematopoietic stem cell"]) & (
adata.obs.disease.isin(["liver lymphoma", "chronic kidney disease"])
)
adata_subset = adata[subset_obs]
adata_subset
AnnDataAccessorSubset object with n_obs × n_vars = 20 × 100
obs: ['_index', 'cell_type', 'cell_type_id', 'disease', 'tissue']
var: ['_index']
adata_subset.obs[["cell_type", "disease"]].value_counts()
cell_type disease
T cell chronic kidney disease 10
hematopoietic stem cell liver lymphoma 10
dtype: int64
This subset can now be registered:
file_subset = ln.File.from_anndata(
adata_subset.to_memory(),
key="subset/mini_anndata_with_obs.h5ad",
field=lb.Gene.ensembl_gene_id,
)
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1900: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.
utils.warn_names_duplicates("var")
❗ received 99 unique terms, 1 empty/duplicated term is ignored
❗ 99 terms (100.00%) are not validated for ensembl_gene_id: ENSG00000000003, ENSG00000000005, ENSG00000000419, ENSG00000000457, ENSG00000000460, ENSG00000000938, ENSG00000000971, ENSG00000001036, ENSG00000001084, ENSG00000001167, ENSG00000001460, ENSG00000001461, ENSG00000001497, ENSG00000001561, ENSG00000001617, ENSG00000001626, ENSG00000001629, ENSG00000001630, ENSG00000001631, ENSG00000002016, ...
❗ no validated features, skip creating feature set
❗ 1 term (25.00%) is not validated for name: cell_type_id
file_subset.save()
Add labels to features, all of them validate:
cell_types = lb.CellType.from_values(adata.obs.cell_type, lb.CellType.name)
tissues = lb.Tissue.from_values(adata.obs.tissue, lb.Tissue.name)
diseases = lb.Disease.from_values(adata.obs.disease, lb.Disease.name)
file_subset.labels.add(cell_types, feature=features.cell_type)
file_subset.labels.add(tissues, feature=features.tissue)
file_subset.labels.add(diseases, feature=features.disease)
Show code cell output
❗ did not create CellType record for 1 non-validated name: 'my new cell type'
file_subset.describe()
File(uid='zirlXUW0rXsHfMsGEhoF', key='subset/mini_anndata_with_obs.h5ad', suffix='.h5ad', accessor='AnnData', size=38992, hash='RgGUx7ndRplZZSmalTAWiw', hash_type='md5', updated_at=2023-10-23 17:45:35)
Provenance:
🗃️ storage: Storage(uid='XmX5Jbqn', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase', type='local', updated_at=2023-10-23 17:45:30, created_by_id=1)
🧩 transform: Transform(uid='eK6wXyT78bxgZ4', name='Subset to T-cells and liver lymphoma', version='0.1.0', type='pipeline', updated_at=2023-10-23 17:45:35, created_by_id=1)
👣 run: Run(uid='kLXAPMH9o6n0emnOBshW', run_at=2023-10-23 17:45:35, transform_id=2, created_by_id=1)
👤 created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2023-10-23 17:45:30)
Features:
obs: FeatureSet(uid='lygziRfkBfrJa34d2uUA', n=3, registry='core.Feature', hash='wlYmDAPUN_HwomBnSH6w', updated_at=2023-10-23 17:45:35, modality_id=1, created_by_id=1)
🔗 cell_type (3, bionty.CellType): 'T cell', 'hematopoietic stem cell', 'hepatocyte'
🔗 tissue (4, bionty.Tissue): 'kidney', 'liver', 'heart', 'brain'
🔗 disease (4, bionty.Disease): 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
Labels:
🏷️ tissues (4, bionty.Tissue): 'kidney', 'liver', 'heart', 'brain'
🏷️ cell_types (3, bionty.CellType): 'T cell', 'hematopoietic stem cell', 'hepatocyte'
🏷️ diseases (4, bionty.Disease): 'chronic kidney disease', 'liver lymphoma', 'cardiac ventricle disorder', 'Alzheimer disease'
Examine data flow#
Common questions that might arise are:
Which h5ad file is in the
subset
subfolder?Which notebook ingested this file?
By whom?
And which file is its parent?
Let’s answer this using LaminDB:
Query a subsetted .h5ad
file containing “hematopoietic stem cell” and “T cell” to learn which h5ad file is in the subset
subfolder:
cell_types_bt_lookup = lb.CellType.lookup()
my_subset = ln.File.filter(
suffix=".h5ad",
key__startswith="subset",
cell_types__in=[
cell_types_bt_lookup.hematopoietic_stem_cell,
cell_types_bt_lookup.t_cell,
],
).first()
my_subset.view_flow()
Show code cell content
!lamin delete --force analysis-usecase
!rm -r ./analysis-usecase
💡 deleting instance testuser1/analysis-usecase
✅ deleted instance settings file: /home/runner/.lamin/instance--testuser1--analysis-usecase.env
✅ instance cache deleted
✅ deleted '.lndb' sqlite file
❗ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/analysis-usecase